Answer to Assignment 3B


Factor:


1. 5x2y6z4 – 15x4y5z3 + 20x3y5z2


= 5x2y5z2 (yz2 – 3x2z + 4x)


2. 12xy + 20yz – 40wy


            = 4y (3x + 5z -10w)


3. 16×2 – 49


            = (4x -7) (4x+7)


4. 4y3 – 64u2y


            =  4y (y2 – 16u2)


            = 4y (y – 4u) (y + 4u)


5. y2 + 8y + 7


            = (y + 7) (y+1)


6. 15z2 – 26z – 21


            = (5z +3) (3z – 7)  


7. 21uv3 – 46uv2 + 24uv


            = uv (21v2 – 46v + 24)


8. 32y2 – 12y – 2


            = 2 ( 16y2 – 6y -1)


            = 2 (8y + 1) (2y -1)  


9. 36×2 + 36x + 9


            = 9 (4×2 + 4x + 1)


            = 9 (2x + 1) (2x +1)


10. 3×2 + 54x + 195


            = 3 (x2 + 18x + 65)


            = 3 (x + 5) (x + 13)


 


 


Answers to Assignment 4B


Solve:


1. (2x – 3)(x – 4) = 0


              (2x – 3) = 0                           (x – 4) = 0


            2x = 3                                     x = 4


     x = 3/2      


 


2. x2 + 3x – 28 = 0  


            (x +7) (x – 4) = 0


            (x +7) = 0                                (x – 4) = 0


            x = -7                                      x = 4


3. x2 + 16 = -10x


            x2 + 10x +16 = 0


            (x + 2) (x +8) = 0


            (x + 2) = 0                               (x +8) = 0


            x = – 2                                     x = – 8


 


 


4. 5×2 = 6x – 16x2   


    5×2 + 16×2 – 6x = 0


    21×2 – 6x = 0


    3x (7x – 2) = 0                   (7x – 2) = 0


    x = 0                                    x = 2/7


 


5. 6×2 + 24x = 2×2 – 36 


    6×2 – 2×2 +24x +36 = 0


    4×2 + 24x +36 = 0


    (2x + 6) (2x + 6) = 0


    (2x + 6) = 0                     (2x + 6) = 0


     2x = -6                                 2x = -6


      x = – 3                                 x = – 3


   


6. 3×2 – 17x + 20 = 0


    (3x – 5) (x – 4) = 0


    (3x – 5) = 0                        (x – 4) = 0


    x = 5/3                                x = 4


   


7. x2 – 36 = 0


    x2 = 36


    x = √36


    x = + 6


8. The area of a triangle is 13.5 square meters. Find the base and height of the rectangle if its height is 6 meters greater than its base. Use an equation and the formula  area of a triangle = 0.5(base)(height).


Area of Triangle = 0.5 (base) height)


            13.5 m2    = 0.5 (base) (height)


Base = x


Height = x + 6


            13.5 m2    = 0.5 (x) (x+6)


            13.5 m2    = 0.5×2 + 3x


            0.5×2 + 3x – 13.5 = 0


            (x2 +6x -27) = 0


            (x + 9) (x – 3) = 0


            (x + 9) = 0                   (x – 3) = 0


            x = -9                         x = 3


But, there is restriction whereas: there is no negative side, and we only need to take the 3 m as the value of x or the value of the base.


Base = 3m     and the          Height = 9 m


To check if this is correct:


Area = 0.5 (3m) (9m)


Area = 0.5(27m2)


Area = 13.5 m2


This is the given area of the triangle.



Credit:ivythesis.typepad.com


0 comments:

Post a Comment

 
Top